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Abstract. Diffractive heavy vector meson photoproduction accompanied by proton dissociation is studied
for arbitrary momentum transfer. The process is described by the non-forward BFKL equation, for which
a complete analytical solution is found, giving the scattering amplitude. The impact of non-leading correc-
tions to the BFKL equation is also analysed. Results are compared to the HERA data on J/ψ production.

1 Introduction

Quantum Chromodynamics offers unique opportunities to
study the richness of dynamical phenomena of nonlinear
quantum field theory. One of the most interesting prob-
lems is related to the colour flow in high energy scatter-
ing. In particular, diffractive processes correspond to an
exchange of a colour singlet system of quarks and glu-
ons between scattering objects. Such diffractive phenom-
ena possess a very clean experimental signature, namely
a large rapidity interval devoid of particles (i.e. a rapidity
gap).

The perturbative QCD description of the hard colour
singlet exchange across a large rapidity interval y relies on
the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [1,
2]. In this framework, the leading powers of rapidity in the
perturbative expansion are resummed, giving the ampli-
tude for hard pomeron exchange. The pomeron is viewed
as a composite system of two reggeized gluons in the colour
singlet state. The status of the BFKL approach to QCD
amplitudes is still under discussion, and both theoretical
improvements and experimental tests are necessary.

Diffractive photoproduction of a heavy vector meson,
separated from the proton remnant by a large rapidity gap
has been proposed [3,4] as an ideal probe of the BFKL
pomeron, see Fig. 1. Indeed, this process permits detailed
studies of both the momentum transfer and the rapidity
dependence of the scattering amplitude. The vector me-
son mass and the momentum transfer t provide the hard
scale required for the perturbative treatment of QCD pro-
cesses, and the sensitivity to the infra-red region is small,
contrary to the case of inclusive hard diffraction.

There are some very recent measurements of this pro-
cess from HERA [5] that allow the theoretical models to
be tested. The available calculations [3,4,6] of the cross-

sections for heavy vector meson production are based on
the Mueller-Tang approximation [7] to the solution of the
leading logarithmic BFKL equation. In this approxima-
tion, parts of the amplitude which vanish in the limit
y → ∞ are neglected [8,4].

Recently, it has been shown [6] that fitting these re-
sults to the data, one obtains a good quantitative agree-
ment with the differential cross-section. Still, the impor-
tant non-leading corrections to the BFKL kernel [9] are
not accounted for. Furthermore, the Mueller-Tang approx-
imation is only good for very large rapidities, and may
need improvement in order to understand the experimen-
tal data. Indeed, it has been found that to describe the
events with gaps between jets subleading corrections to
the Mueller-Tang picture are important [8,10].

Thus, the main goal of this paper is to investigate
diffractive heavy1 vector meson photoproduction beyond
the leading logarithmic BFKL equation and beyond the
Mueller-Tang approximation. The obtained results are
compared to previous ones [3,4] and to the experimental
data from HERA [5]. In Sect. 2 we define the framework, in
Sect. 3 the BFKL equation is presented, and in Sect. 4 an
exact solution of the equation is derived. Properties of the
exact and numerical solutions are studied in Sect. 5, com-
parison with data is performed in Sect. 6, and in Sect. 7
conclusions are given.

2 Hard colour singlet exchange

The diffractive process γp → V X at large momentum
transfer t (see Fig. 1) takes place by exchange of the BFKL

1 Light vector meson production will be studied in a forth-
coming paper [11]
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Fig. 1. Feynman diagram illustrating vector meson photopro-
duction at high momentum transfer

pomeron. It has been demonstrated, that at large momen-
tum transfer, the hard pomeron couples predominantly to
individual partons in the proton [12]. Thus, the cross-sec-
tion may be factorized into a product of the parton level
cross-section and the parton distribution functions,

dσ(γp → V X)
dt dxj

=



 4N4
c

(N2
c − 1)2

G(xj , t) +
∑

f

[qf (xj , t) + q̄f (xj , t)]





×dσ(γq → V q)
dt

, (1)

where Nc = 3, G(xj , t) and qf (xj , t) are the gluon and
quark distribution functions respectively, and W 2 is the
γp centre-of-mass energy squared. The struck parton in
the proton, initiating a jet in the proton hemisphere, car-
ries the fraction xj of the longitudinal momentum of the
incoming proton. The partonic cross-section, character-
ized by the invariant collision energy squared ŝ = xjW

2

is expressed in terms of the amplitude A(ŝ, t),

dσ

dt
=

1
16π

|A(ŝ, t)|2. (2)

The amplitude is dominated by its imaginary part, which
we shall parametrize, as in [3,6], by a dimensionless quan-
tity F

Im A(ŝ, t) =
16π
9t2

F(z, τ) (3)

where z and τ are defined by

z =
3αs

2π
ln

(
ŝ

Λ2

)
(4)

τ =
|t|

M2
V +Q2

γ

, (5)

where MV is the mass of the vector meson, Qγ is the
photon virtuality2 and Λ2 is a characteristic mass scale
related to M2

V and |t|. Following the results of [6] we as-
sume Λ2 = M2

V +Q2
γ . For completeness, we give the cross-

section expressed in terms of F(z, τ), where the real part
of the amplitude is neglected,

2 In this paper we only consider Qγ = 0

dσ(γq → V q)
dt

=
16π
81t4

|F(z, τ)|2. (6)

This representation is rather convenient for the calcula-
tions performed in Sect. 4.

3 The BFKL equation

The imaginary part ImA(ŝ, t) of the amplitude for the
process γp → V +gap+X+jet corresponds to the diagram
in Fig. 1 illustrating QCD pomeron exchange, and can be
written in the following form:

Im A(ŝ, t = −q2)

=
∫
d2k

π

Φ0
γV (k2, q2)Φqq(x,k, q)

[(k + q/2)2 + s0][(k − q/2)2 + s0]
. (7)

In this equation, x is the longitudinal momentum frac-
tion of the incoming proton taken by the hard pomeron,
x = Λ2/ŝ, q/2 ± k denote the transverse momenta of the
exchanged gluons, and q is the transverse part of the mo-
mentum transfer. In the propagators corresponding to the
exchanged gluons we include the parameter s0 which can
be viewed as the effective representation of the inverse
of the colour confinement radius squared. Investigation
of such non-perturbative effects in the gluon propagator
at low virtualities was performed, for instance, in [13],
where it was found that 0.1 GeV2 < s0 < 0.5 GeV2. Re-
cent lattice studies [14] indicate a value of s0 between
0.25 GeV2 and 0.65 GeV2. Having some freedom here, we
choose s0 = 0.5 GeV2. The sensitivity of the cross-section
to the magnitude of s0 can serve as an estimate of the
sensitivity of the results to the contribution coming from
the infra-red region. It should be noted that formula (7)
gives a finite result in the limit s0 = 0 GeV2. An inter-
esting discussion of non-perturbative effects in the gluon
propagator in the context of vector meson production can
be found in [15].

The couplings of the external particle pair to the colour
singlet gluonic ladder are described, in the high energy
limit, by impact factors Φ0

γV (k2, q2) and Φ0
qq(k

2, q2) for
the γ → V transition and the quark elastic scattering,
respectively. The impact factors are obtained in the per-
turbative QCD framework and we approximate them by
the leading terms in the perturbative expansion [16]:

Φ0
γV =

Cαs

2

(
1
q̄2

− 1
q2‖ + k2

)
,

Φ0
qq = αs. (8)

In the former formula, factorization of the scattering pro-
cess and the meson formation is assumed, and the non-
relativistic approximation of the meson wave function is
used. In this approximation the quarks in the meson have
collinear four-momenta and MV = 2Mq where Mq is the
mass of the constituent quark. To leading order accuracy,
the constant C may be related to the vector meson leptonic
decay width

C2 =
3ΓV

eeM
3
V

α
. (9)
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We have also defined

q̄2 = q2‖ + q2/4, (10)

q2‖ = (Q2
γ +M2

V )/4. (11)

This standard approximation is based on the fact, that
the typical quark three-momenta in charmonium states
are much smaller than the charm quark mass. Still, these
momenta are non-zero, leading to a smearing of the non-
relativistic form-factor. The resulting corrections were ex-
tensively discussed e.g. in [17] for the forward scattering
case. Moreover, it is expected at larger momentum trans-
fer |t| > M2

V , that the relativistic effects become enhanced,
as the mass is no longer the largest scale in the process.
For instance, in the non-relativistic approximation one
neglects helicity flip processes, whose relative contribu-
tion may grow with increasing momentum transfer, as was
demonstrated for a single helicity flip amplitude for light
vector mesons [18]. Therefore, the applied approximation
may be inaccurate at very large momentum transfers.

The function Φqq(x,k, q) satisfies the BFKL equation,
which in the leading ln(1/x) approximation has the fol-
lowing form:

Φqq(x,k, q)

= Φ0
qq(k

2, q2) +
3αs

2π2

∫ 1

x

dx′

x′

∫
d2k′

(k′ − k)2 + s0

×
{ [

k2
1

k′2
1 + s0

+
k2

2

k′2
2 + s0

− q2
(k′ − k)2 + s0

(k′2
1 + s0)(k′2

2 + s0)

]

×Φqq(x′,k′, q)

−
[

k2
1

k′2
1 + (k′ − k)2 + 2s0

+
k2

2

k′2
2 + (k′ − k)2 + 2s0

]

×Φqq(x′,k, q)

}

(12)

where
k1,2 =

q

2
± k, k′

1,2 =
q

2
± k′ (13)

denote the transverse momenta of the gluons. At leading
logarithmic accuracy, a fixed value of the QCD coupling
αs should be used in equations (8) and (12).

It is known that the BFKL equation can acquire signifi-
cant non-leading contributions [9]. Although the structure
of those corrections is fairly complicated, their dominant
part is rather simple, and follows from restricting the in-
tegration region in the real emission term in (12) [19,20].
For q = 0 the relevant limitation is [19,21]

k′2 ≤ k2x
′

x
. (14)

This follows from the requirement that the virtuality of
the gluons exchanged along the chain is dominated by the
transverse momentum squared. The constraint (14) can be
shown to exhaust about 70% of the next-to-leading correc-
tions to the QCD pomeron intercept [9,19]. Generalization

of the constraint (14) to the case of a non-forward config-
uration with q2 ≥ 0 is assumed to take the following form
[22,10]:

k′2 ≤ (k2 + q2/4)
x′

x
. (15)

The latter formula gives at k2 < q2/4 a less restrictive re-
lation for k′ in respect to k, than constraint (14) in the for-
ward case. Consequently, the generalized constraint (15)
may realize, at larger momentum transfer, a smaller frac-
tion of the non-leading corrections than the quoted 70%
at q2 = 0. This would mean that our estimate of the cross-
section could be too high at larger q2.

Another important part of the non-leading corrections
to the BFKL equation is related to running of the coupling
constant within the ladder. To be consistent, the running
coupling will also be used in the impact factors (8). Be-
sides the BFKL equation (12) in the leading logarithmic
approximation we shall therefore also consider the equa-
tion embodying the constraint (15) and a running cou-
pling in order to estimate the effects of the non-leading
contributions.

The corresponding equation which contains constraint
(15) in the real emission term reads:

Φqq(x,k, q)

= Φ0
qq(k

2, q2) +
3αs(µ2)

2π2

∫ 1

x

dx′

x′

∫
d2k′

(k′ − k)2 + s0

×
{ [

k2
1

k′2
1 + s0

+
k2

2

k′2
2 + s0

− q2
(k′ − k)2 + s0

(k′2
1 + s0)(k′2

2 + s0)

]

×Φqq(x′,k′, q)Θ
(
(k2 + q2/4)x′/x− k′2)

)

−
[

k2
1

k′2
1 + (k′ − k)2 + 2s0

+
k2

2

k′2
2 + (k′ − k)2 + 2s0

]

×Φqq(x′,k, q)

}

. (16)

with the scale of the coupling set to µ2 = k2 + q2/4 + s0.
The scales of the coupling constants in the impact factors
should be related to the virtualities entering the vertices.
A natural choice is then

µ2
1 = k2 +M2

c in Φ0
γV ,

µ2
2 = k2 + s0 in Φ0

qq, (17)

with k2 being the virtuality of the gluon entering the ver-
tex. We will also consider another choice

µ′
1
2 = µ2

1/4 and µ′
2
2 = µ2

2/4, (18)

necessary in order to obtain a good fit to the data. A sim-
ilar choice of scales was needed to describe double-tagged
events at LEP in an analogous NL-BFKL framework [23].
Equations (12) and (16) are solved using an approximate
numerical technique, described in detail in [22] and [10].
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4 The exact LL BFKL solution

The BFKL kernel (12) in the leading logarithmic approx-
imation exhibits, in the impact parameter representation,
invariance under conformal transformations [2]. The con-
formal symmetry of the kernel permits the following ex-
pansion of the amplitude in the basis of eigenfunctions
En,ν [2]:

F(z, τ) =
t2

(2π)3

n=∞∑

n=−∞

∫ ∞

−∞
dν

× ν2 + n2/4
[ν2 + (n− 1)2/4][ν2 + (n+ 1)2/4]

× exp[χn(ν)z] IA
n,ν(q) (IB

n,ν(q))∗ (19)

where

χn(ν) = 4Re
(
ψ(1) − ψ(1/2 + |n|/2 + iν)

)
(20)

is proportional to the eigenvalues of the BFKL kernel and

IA
n,ν(q) =

∫
d2k

(2π)2
IA(k, q)

∫
d2ρ1 d

2ρ2 En,ν(ρ1, ρ2)

× exp(ik · ρ1 + i(q − k) · ρ2) (21)

(and analogously for the index B). The eigenfunctions are
given by

En,ν(ρ1, ρ2) =
(
ρ1 − ρ2

ρ1ρ2

)h((
ρ1 − ρ2

ρ1ρ2

)∗)h̃

(22)

where h = 1/2 + n/2 + iν and h̃ = 1/2 − n/2 + iν. Here k
and q are transverse two dimensional momentum vectors,
and ρ1 and ρ2 are position space vectors in the standard
complex representation (e.g. k = kx + iky). The scalar
product in this representation is given by, e.g., k · ρ1 =
k∗ρ1/2 + kρ∗

1/2. The functions IA = Φ0
γV and IB = Φ0

qq

are the impact factors (8).
The quark impact factor in representation (21) was

found in [8], generalizing the Mueller-Tang subtraction [7]
to non-zero conformal spin;

Iqq
n,ν(q) = −4π αs i

n

|q|
( |q|2

4

)iν (
q∗

q

)n/2

×Γ (1/2 + n/2 − iν)
Γ (1/2 + n/2 + iν)

(23)

for even n and Iqq
n,ν = 0 for odd n.

The impact factor for the γ → V transition is known
for n = 0 [4]. We shall generalize this result to arbitrary
n, which requires evaluating the following integrals

IγV
n,ν(q) =

∫
d2k

(2π)2
IγV (k, q)

∫
d2ρ1 d

2ρ2 En,ν(ρ1, ρ2)

× exp
(
ik∗ρ1/2 + ikρ∗

1/2

+i(q∗ − k∗)ρ2/2 + i(q − k)ρ∗
2/2

)
. (24)

Changing variables to ρ1 = R + ρ/2, ρ2 = R − ρ/2 and
integrating over d2k we get

IγV
n,ν(q) = −C αs

4π

∫
d2ρK0(q‖|ρ|)

×
∫
d2R En,ν(R+ ρ/2, R− ρ/2)

× exp(iq∗R/2 + iqR∗/2). (25)

The integral over d2R was obtained by Navelet and
Peschanski [24]. Inserting their result one obtains

IγV
n,ν(q) = −C αs

4π

∫
d2ρ

(−1)n|ρ|
2π2 bn,ν Ên,µ(ρ, ρ∗)

×K0(q‖|ρ|) (26)

where

Ên,µ(ρ, ρ∗) =
( |q|

8

)2iν(
q∗

q

)n/2

(27)

×Γ (1 − iν + n/2)Γ (1 − iν − n/2)

×
[
Jn/2−iν(q∗ρ/4) J−n/2−iν(qρ∗/4)

− (−1)n J−n/2+iν(q∗ρ/4) Jn/2+iν(qρ∗/4)
]

and

bn,ν =
24iνπ3

|n|/2 − iν

Γ (|n|/2 − iν + 1/2)Γ (|n|/2 + iν)
Γ (|n|/2 + iν + 1/2)Γ (|n|/2 − iν)

.

(28)

Thus, we have a result in terms of a double integral
over d2ρ = |ρ| d|ρ| dφ. Further, we represent the Bessel
functions by their power series expansions Jσ(z) = (z/2)σ
∑∞

k=0(−1)k (z/2)2k/[Γ (k + 1)Γ (σ + k + 1)] and obtain

Jn/2−iν(q∗ρ/4) J−n/2−iν(qρ∗/4) (29)
− (−1)n J−n/2+iν(q∗ρ/4) Jn/2+iν(qρ∗/4)

=

[ ∞∑

k=0

∞∑

l=0

{(
(−1)k+l (|q||ρ|/8)2k+2l−2iν

× exp[iφ(2l − 2k + n)]
)/(

Γ (k + 1)Γ (l + 1)

×Γ (1 + l + n/2 − iν)Γ (1 + k − n/2 − iν)
)}

]

−[c.c.].

Both the φ and |ρ| integrations in (25) are performed term
by term in the sums (29). All the φ dependence of the
integrand in (25) is due to expression (29) where in the
subsequent terms only integer powers of exp(iφ) appear.
Thus, after the angular integration, only terms with n +
2k−2l = 0 contribute, and one of the summations in (29)
may be trivially performed giving

∫ 2π

0
dφ

[
Jn/2−iν(q∗ρ/4) J−n/2−iν(qρ∗/4)
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− (−1)n J−n/2+iν(q∗ρ/4) Jn/2+iν(qρ∗/4)
]

=

[

2π
∞∑

l=0

{(
(−1)|n|/2 (|q||ρ|/8)4l+|n|−2iν

)

/(
Γ (1 + l)Γ (1 + l + |n|/2)Γ (1 + l − iν)

×Γ (1 + l + |n|/2 − iν)
)}

]

− [c.c.]. (30)

Note that the odd n contributions are all zero. Using (30)
and performing the remaining |ρ| integration in (25), we
have

∫ ∞

0
d|ρ| |ρ|2K0(q‖|ρ|)

∫ 2π

0
dφ

×
[
Jn/2−iν(q∗ρ/4) J−n/2−iν(qρ∗/4)

− (−1)n J−n/2+iν(q∗ρ/4) Jn/2+iν(qρ∗/4)
]

=

[
4π
q3‖

∞∑

l=0

{(
(−1)|n|/2 Γ 2(3/2 − iν + 2l + |n|/2)

×(|q|/4q‖)4l+|n|−2iν
)/(

Γ (1 + l)Γ (1 + l + |n|/2)

×Γ (1 + l − iν)Γ (1 + l + |n|/2 − iν)
)}

]

− [c.c.]. (31)

The obtained series is convergent for |q|/4q‖ < 1, where
the infinite sum gives the value of the integral. We need to
continue analytically the result to |q|/4q‖ ≥ 1. Thus, we
represent this infinite sum of terms A(l) as an integral over
complex l using a Sommerfeld-Watson type transform. A
contour C1 in the complex l plane is introduced enclosing
the half-plane Re (l) > −1/2 where A(l) has no poles.
It is possible to construct a function D(l) with a pole
structure and with residues such that the contour integral
of D(l)A(l)/(2πi) along C1, evaluated using the Cauchy
theorem, reproduces the initial sum over the index l. It is
easy to verify that

D(l) = −π sinπiν
sinπl sinπ(l − iν)

=
Γ (l)Γ (1 − l)Γ (l − iν)Γ (1 − l + iν)

Γ (iν)Γ (1 − iν)
(32)

has the desired properties. Thus one has
[

4π
q3‖

∞∑

l=0

{(
(−1)|n|/2 Γ 2(3/2 − iν + 2l + |n|/2)

×(|q|/4q‖)4l+|n|−2iν
)/(

Γ (1 + l)Γ (1 + l + |n|/2)

×Γ (1 + l − iν)Γ (1 + l + |n|/2 − iν)
)}

]

− [c.c.]

=
4π
q3‖

∮

C1

dlD(l)
2πi

{(
(−1)|n|/2 (|q|/4q‖)4l+|n|−2iν

×Γ 2(3/2 − iν + 2l + |n|/2)
)

/(
Γ (1 + l)Γ (1 + l + |n|/2)

×Γ (1 + l − iν)Γ (1 + l + |n|/2 − iν)
)}
. (33)

The contribution from the region of complex l → ∞ van-
ishes in the limit, so the value of the contour integral is
given by a line integral

[
4π
q3‖

∞∑

l=0

{(
(−1)|n|/2 Γ 2(3/2 − iν + 2l + |n|/2)

×(|q|/4q‖)4l+|n|−2iν
)/(

Γ (1 + l)Γ (1 + l + |n|/2)

×Γ (1 + l − iν)Γ (1 + l + |n|/2 − iν)
)}

]

− [c.c.]

= −4π
q3‖

(−1)|n|/2
∫ −1/2+i∞

−1/2−i∞

dl

2πi
(|q|/4q‖)4l+|n|−2iν

×Γ (l − iν)Γ (1 − l + iν)
Γ (iν)Γ (1 − iν)

Γ (l)Γ (1 − l)
Γ (1 + l)Γ (1 + l − iν)

× Γ 2(3/2 + 2l + |n|/2 − iν)
Γ (1 + l + |n|/2)Γ (1 + l + |n|/2 − iν)

. (34)

This form is suggestive of the n = 0 result of [4]. Sub-
stituting s = 2l + 1 − iν, τ = q2/4q2‖ and using the
Euler Γ -function relations such as the doubling formula
22z−1Γ (z)Γ (z + 1/2) =

√
π Γ (2z) allows simplification

of the integrand. Inserting (27) and (28) into (26), tak-
ing into account (34) and using the identity (−1)|n|/2

Γ (iν+|n|/2) Γ (1−iν−|n|/2)
Γ (iν) Γ (1−iν) = 1 for even n, we obtain the

final answer,

IγV
n,ν(q) = C αs

8π2

|q|3
( |q|2

4

)iν (
q∗

q

)n/2 (
1
4

)|n|/2

×Γ (1/2 − iν + |n|/2)
Γ (1/2 + iν + |n|/2)

×
∫ i∞

−i∞

ds

2πi
τ1/2+s+|n|/2

× Γ (1 − s− iν)Γ (1 − s+ iν)
Γ (1 − s/2 − iν/2)Γ (1 − s/2 + iν/2)

×
{(
Γ 2(1/2 + s+ |n|/2)

)

/(
Γ (1/2 + s/2 − iν/2 + |n|/2)

×Γ (1/2 + s/2 + iν/2 + |n|/2)
)}

(35)

for even n and IγV
n,ν = 0 for odd n. This agrees with the

corresponding expression of Bartels et al. for n = 0 [4].
The r.h.s. of (35) is the desired analytic continuation of
the sum of the infinite power series (c.f. (31)) which holds
for all values of τ . Introducing the notation m = n/2, and
using the result for Iqq

n,ν , we arrive at the amplitude
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F(z, τ) = 4C α2
s

m=∞∑

m=−∞

(
−1

4

)|m|
(36)

×
∫

dν
ν2 +m2

(ν2 + (m− 1/2)2)(ν2 + (m+ 1/2)2)
eχm(ν)z

×
∫ i∞

−i∞

ds

2πi
τ1/2+s+|m|

× Γ (1 − s− iν)Γ (1 − s+ iν)
Γ (1 − s/2 − iν/2)Γ (1 − s/2 + iν/2)

× Γ 2(1/2 + s+ |m|)
Γ (1/2 + s/2 − iν/2 + |m|)Γ (1/2 + s/2 + iν/2 + |m|) ,

which is equal to

F(z, τ) =
8C α2

s

π

m=∞∑

m=−∞
(−1)m

×
∫

dν
ν2 +m2

(ν2 + (m− 1/2)2)(ν2 + (m+ 1/2)2)
eχm(ν)z

×
∫ i∞

−i∞

ds

2πi

(
τ

4

)1/2+s+|m| {(
Γ (1/2 − s/2 + iν/2)

×Γ 2(1/2 + s+ |m|)Γ (1/2 − s/2 − iν/2)
)

/(
Γ (1/2 + s/2 − iν/2 + |m|)

×Γ (1/2 + s/2 + iν/2 + |m|)
)}
. (37)

Note that the m contribution is equal to the −m contri-
bution.

5 Properties of the solutions

The form of the solution to the BFKL equation given by
(37) is simple enough to perform extended studies of the
amplitude, including the impact of higher conformal spins.
The remaining complex integrations over s and ν are per-
formed numerically. In the analysis we take the real pho-
ton case, Q2

γ = 0. First, we set z = 0 in which case the
LO BFKL amplitude is described by a simple two-gluon
exchange,

F(z = 0, τ) = C α2
s

(
4τ2

1 − τ2

)
ln

(
(1 + τ)2

4τ

)
. (38)

A valuable cross check of our calculation is to inves-
tigate how the two-gluon exchange amplitude builds up
when subsequent higher conformal spin components are
being added. In Fig. 2 we show curves corresponding to
|F(z, τ)/(C αs)|2 approximated by partial sums over m in
(37) up to m = mmax = 0, 1, 4 and compare them with
the amplitude given by (38). It is clear that results com-
ing from the two approaches agree. The sum over confor-
mal spins converges quickly to the exact result, however
more terms are needed for increasing τ . Note, that the
m = n = 0 component and the exact result have about
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Fig. 2. The amplitude squared for the diffractive heavy vector
meson production off a quark at zero rapidity (z = 0): the
exact two-gluon exchange result (dots) compared with sums of
contributions up to conformal spin nmax = 2mmax (lines)

the same absolute values for τ � 1 but the signs of the
amplitudes are opposite.

Having checked this, we are in a position to study the
importance of higher conformal spins at z > 0. Thus, in
Fig. 3 the ratio of F(z, τ) (with mmax = 7) to the m = 0
component is plotted for various z as a function of τ and
for various τ as a function of z. The relative importance
of the higher conformal spins for the cross-section may be
read out from Fig. 4. The contours show constant values
of

E =
dσ/dt|exact − dσ/dt|n=0

dσ/dt|n=0
, (39)

giving therefore the relative error of the conventional lead-
ing conformal spin approximation in the (z, τ) plane. As
expected, the correction due to m �= 0 components de-
creases with increasing z (or y) and increases with in-
creasing τ (or |t|). Note also the line dσ/dt = 0 on which
the complete amplitude changes sign, leading to a dip in
the cross-section dσ/dt|exact. Such a dip does not appear
in the leading conformal spin approximation.

The analytical results may also be used to test the
method and approximations used in the numerical ap-
proach to the non-forward BFKL equation [22,10]. In
Fig. 5, a comparison between results obtained in these two
frameworks is given. With good accuracy the numerical so-
lution coincides with the analytical one. At larger values of
z and τ a discrepancy between the two solutions appears.
This is caused by an upper cut-offKF = 105 GeV imposed
on the gluon transverse momenta, which is necessary for
the numerical approach. The very large gluon momenta
that are affected by this procedure contribute significantly
to the amplitudes when the momentum transfer and/or
the rapidity is very large.

The non-leading corrections [9] to the BFKL equa-
tion have a large impact on the rapidity dependence of
the cross-sections, as already discussed. At high rapidi-
ties, this leads to dramatic effects in the magnitude of the
cross-section [22]. Therefore it is important to incorporate
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those non-leading effects in the analysis. In this case, the
conformal symmetry of the kernel is broken and no exact
analytical approach is known yet. Fortunately, using the
more straightforward numerical method one may obtain
a solution to the BFKL equation beyond the leading log-
arithmic approximation (BFKL LL+NL), given by (16).
In Fig. 6 the rapidity y = ln(1/x) (c.f. (12), (16)) and |t|
dependencies of the cross-section dσ/dt (y, |t|) for J/ψ pro-
duction off a quark are shown. The cross-sections obtained
from the LL BFKL and BFKL LL+NL are compared. At
the leading logarithmic accuracy the value of the fixed cou-
pling αs is not constrained and we choose αs = 0.17. With
this choice, the LL and LL+NL results in the studied win-
dow of y and |t| have a similar overall normalization. In
the BFKL LL+NL equation (16), we take s0 = 0.5 GeV2,
and the scales of the running coupling according to (17).
It may be seen in Fig. 6a, that the increase for large y
is less steep (i.e. the intercept is smaller) for the LL+NL
case, in spite of taking a rather small value of αs in the
LL BFKL equation. To be precise, the pomeron intercept
is αP = 1.45 for the LL BFKL curves and αP � 1.3 for
the non-leading solution. It is clear, that the non-leading
prediction is much closer to the experimental estimates of
αP � 1.2 in the vector meson production process.
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Fig. 6a,b. The cross-sections dσ/dt(y, |t|) for diffractive J/ψ
production off a quark shown as a function of a rapidity y for
|t| = 3 GeV2 (uppermost curves), 10 GeV2 (in the middle)
and 30 GeV2 (lowermost curves), and b momentum transfer
|t| for y = 4 (lowermost curves), y = 7 (in the middle) and
y = 10 (uppermost curves). Solid curves are obtained from the
LL BFKL equation and dashed ones from the BFKL LL+NL
equation

Thus, when both the normalization (which also de-
pends on αs) and the rapidity dependence are taken into
account, the need for NL effects in the BFKL kernel should
become visible. Comparison of the shapes in |t|, given in
Fig. 6b, demonstrates that they are similar in both cases,
especially in the low |t| range. The LL+NL curves are
steeper because of the running of αs. To conclude, the
main impact of the non-leading corrections seems to be a
reduction of the pomeron intercept.

6 Comparison with data

The results of the model calculation described in the pre-
vious sections may be compared to the ZEUS data [5]
on diffractive J/ψ photoproduction. In this measurement,
the photon virtuality Q2

γ � 0 and the photon-proton col-
lision energy is in the range 80 GeV < W < 120 GeV.
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Fig. 7. The cross-section dσ/dt for diffractive J/ψ photo-
production off proton shown as a function of the momentum
transfer |t|. ZEUS data are compared with the theoretical re-
sults from: LL BFKL (continuous line), the leading conformal
spin approximation to LL BFKL amplitude (dashed line) and
the BFKL equation with non-leading corrections (dotted lines
where lower and upper lines correspond to the choices of scales
given by (17) and (18) respectively). A correlated 10% uncer-
tainty of the normalization of data points is not included into
the error bars

In Fig. 7 the data are shown together with the theoreti-
cal curves obtained from (1) with various models. These
curves were obtained using the CTEQ5L parton distribu-
tions [25]. The continuous curve is given by the analytical
solution of the BFKL equation (37) with αs = 0.21 and all
conformal spins included, and the dashed one corresponds
to the leading conformal spin (n = 2m = 0) in (37). The
dotted curves are obtained from the BFKL equation with
non-leading effects (16). For the lower curve, the strong
coupling constant in the impact factors is evaluated at
the scales given by (17), and for the upper curve we use
the values given by (18) as described in Sect. 3.

The LL BFKL results fit the data very well and the dif-
ference between the leading conformal spin and the full so-
lution is small, although the discrepancy increases with t.
The non-leading BFKL results are in rather good agree-
ment with the data when low scales of αs are chosen (18),
but underestimate the data when the most natural choice
(17) of scales is made. Thus, in formulating predictions
extrapolating beyond the currently measured kinematical
window, we will use the data-guided option (18). We have
also checked, that the sensitivity of the normalization of
the non-leading BFKL results to the value of s0 is rela-
tively large within the considered window: for the scale
choice (17), it increases by a factor of two when s0 de-
creases from 0.5 GeV2 to 0.1 GeV2. The t-dependence is
only slightly steeper at low t for the latter case. Therefore,
the shape of the cross-section is stable against variation
of details, while the normalization is more uncertain, and
critical tests of BFKL should be based on the shape rather
than the normalization of the cross-section.
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Recall that an important feature of the non-leading
BFKL solution is the emerging value of the pomeron in-
tercept of about 1.3, to be compared with the LL BFKL
value αP = 1.56 for αs = 0.21. Thus, we expect that
the LL BFKL should overestimate significantly the cross-
sections for larger average collision energies W . An in-
teresting experimental verification of the impact of non-
leading corrections on the scattering amplitudes could be
provided by performing analogous measurements at higher
energies W . In Fig. 8 theoretical estimates from LL BFKL
and non-leading BFKL are shown for the photon-proton
collision energy W = 100 and 200 GeV, for a wide t range.
The parameters are adjusted to give the best fits of the
presently available ZEUS data, that is αs = 0.21 for
LL BFKL, s0 = 0.5 GeV2 and the running coupling be-
ing taken at scales (18). One may see that although the
inclusion of non-leading corrections lowers the expected
value of the cross-sections at W = 200 GeV it may be
insufficient to discriminate between the models. We have
checked that the impact of higher conformal spins may be
safely neglected at W = 200 GeV and |t| < 10 GeV2.

Note that the cross-sections fall off much steeper with
increasing t when the non-leading corrections are included
(see Fig. 8 a,b). This is mostly because of the running of
the coupling with the energy scale related to the momen-
tum transfer.

7 Conclusions

In this paper an analysis was performed of BFKL ampli-
tudes for diffractive heavy vector meson photoproduction
at large momentum transfer. We obtained an explicit com-
plete solution to the leading-logarithmic BFKL equation
describing this process. The novel feature of our approach
is the inclusion of terms subleading at very high rapid-
ity, corresponding to higher conformal spins in Lipatov’s
expansion of the BFKL amplitude. These subleading ef-
fects were found to reduce theoretical expectations for the
cross-sections by about 10% in the kinematical window
currently probed by experiments on the J/ψ production.
This result gives a firmer ground for the previous results,
based on the leading conformal spin approximation. The
relative importance of higher conformal spins increases,
however, with decreasing collision energy or increasing
momentum transfer, as shown in Fig. 4.

Also non-leading corrections to BFKL equations were
taken into account phenomenologically by using the run-
ning coupling constant and applying the so-called consis-
tency constraint in the BFKL kernel. In this case a nu-
merical method was used to solve the equation. The main
influence of non-leading corrections was found to be a re-
duction of the hard pomeron intercept to about 1.3, close
to the value determined from experiment.

Results obtained from both approaches were compared
to the experimental data on the t-dependent differential
cross-section for J/ψ photoproduction at γp collision en-
ergy W ∼ 100 GeV. In both cases a good fit was ob-
tained, although we found that the cross-section grows
much slower with rapidity when non-leading corrections
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Fig. 8a,b. The cross-sections dσ/dt for diffractive J/ψ photo-
production off proton shown as a function of the momen-
tum transfer |t| for γp collision energy a W = 100 GeV and
b W = 200 GeV. The continuous and dotted lines represent
the LL BFKL and BFKL with non-leading corrections results
respectively

are included, leading to a discrepancy from the LL BFKL
results increasing with rapidity. The ratio of the differen-
tial cross-sections at W = 200 GeV and W = 100 GeV
may be used to find the influence of non-leading correc-
tions to the BFKL equation if the data are accurate
enough.

To summarize, we provide more insight into the BFKL
mechanism of diffractive heavy vector meson production
and confirm that the available data are consistent with
BFKL expectations.
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